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Figure 12-32 A comparison of the Bessel-Thomson and the equal-ripple delay functions.

troduced in Sec. 12-4; it is described in Ref. 11, which also contains an extensive
tabulation of the corresponding natural modes. The derivation is straightforward
but lengthy and hence is not included here; the reader should consult Ref. 3 for a
discussion of the theory and Ref. 10 for the tables of natural modes. Reference 3
also contains a description of the rational function H(s) which combines flat
group delay in the passband with a Chebyshev loss in the stopband.

12-7 APPROXIMATION METHODS FOR BANDPASS FILTERS

Often the desired passband is not centered around the frequency origin but be-
tween two positive frequencies w,, and w,,, so that a bandpass rather than a
low-pass filter is required. As discussed in Sec. 12-5, it is possible to design such a
filter using a reactance transformation if the desired loss response has a geometric
{logarithmic) symmetry around the band center frequency \/ W, w,, . Also,
a Mocbius transformation can sometimes be used to obtain filter responses which
are asymmetrical. Often, however, neither of these techniques is applicable, and
the filter must be designed directly. In this section, therefore, a brief description
will be given of direct approximation methods applicable for bandpass filters.

To obtain a bandpass loss response which is maximally flat at w,, we can use
the function

|K(jw)]* = C, - (w? _ng) K(s) = icéfzw (12-179)

(@* — wf)? I:[ s* + f)

:a-

i=1
where n is even and k < n/2. The characteristic function of (12-179) is clearly a
modified version of that given in Eq. (12-36). It is easy to verify that | K{jw)[* and
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its first n — 1 derivatives with respect to w” are all zero at w = +w,, whatever the
values chosen for the loss poles @,. An example of the loss response obtainable
with this type of characteristic function is shown in Fig. 12-33. An iterative design
process for finding the loss poles w; for prescribed «, and specified minimum
stopband loss is given in Ref. 2.

Equal-ripple passband general stopband bandpass filters can also be obtained
by modifying the design technique described in Sec. 12-4. Now the transformation

41 1+8°7
- e 0 S Mok 3
- \/s2 + Q2 \/1 +Q3 572 s e (he-180)

is used to obtain the frequency-normalized response type illustrated in
Fig. 12-34a. Following the discussion of Sec. 12-4, it can again be shown that the
transformation of (12-180) maps the passband (which here extends from Q to 1)
to the jY axis. The upper stopband is mapped to X, < X < 1, where X, is the
transformed value of Q1 ; the lower stopband is mapped to Ml XX,
where X is the transformed valuc of the lower stopband limit Q, .. When P(Z) is
defined, as in Sec. 12-4, by (12-78), and | K |* by (12-79), the derivation proving the
equal-ripple-passband character of the loss remains valid.

The only change in the design procedure given in Sec. 12-4 is that now there
are loss poles at Q = 0, which contribute factors of the form Z + 1/Q,, to the
expression of P(Z) given in (12-87). Hence, (12-87) is replaced by

n 1\ (n=no=nxn)/2
PZy=TJ](Z+X)= (Z+ Q«w) (Z + 1)= [T ((Z+X)

i=1

P i=1

(12-181)
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Figure 12-33 Maximally flat loss bandpass filter response.
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Figure 12-34 (a) Equal-ripple passband general stopband bandpass loss response; (b) loss response
transformed into the Z plane.

where n, is the number of loss poles at { = 0. Substituting into (12-79) gives

e e AL (12-182)

im0~ nx)2
(=22 + Q5e(—Z2 4 1= [I . (—2%+ XP)?

i=1
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Using (12-180), it is easily shown that

1 == QZ )Sz
Q:-2Zr= iﬁ_ti__:‘...__.
’ 0,57+ 97)
e Qz
1-2z%= —_“w;z T Qz‘“‘) (12-183)
P1
Xt -2 I—le §* + OF
2 =

QL -QIST+ Q2
It follows that the denominator of | K |? in (12-182) equals

(m—no—nx)/2
st I]  (s*+Q)?

D(S)=C (i's’:;+ o7y (12-184)

where C is a constant. Unless n is even, D(S) is not a full square and hence no real
rational K(s) can be found from (12-182). Since n = n, + n,, + 2m, where m is the
number of finite nonzero loss poles for positive Q, this indicates that n, + 1, must
be even if this approximation is used.}

It will be noted that for Q,, = 0 and n, = 0, all formulas and hence the whole
design procedure simplify to the low-pass filter approximation described in
Sec. 12-4.

Next, the design of maximally flat-delay bandpass filters will be briefly dis-
cussed. The “obvious™ process of obtaining such a filter by applying the low-
pass-to-bandpass transformation (12-97) to the maximally flat-delay function
derived in Sec. 12-6 is, unfortunately, useless. This can be seen by noting that the
desired bandpass phasec response is linear; the low-pass response found in
Sec. 12-6 is indeed a linear-phase one, but the transformation (12-97) distorts the
frequency axis in a nonlinear manner, as Fig. 12-22¢ illustrates. Hence, a phase
response linear in w around o = 0 becomes nonlinear in o around w, after the
transformation.

An exact solution to the flat-delay problem is possible, both for maximally flat
and equal-ripple delay response.'!!> However, the necessary derivations are
lengthy and hence are omitted. Instead, a simple if inexact procedure will be
described for obtaining an approximately flat-delay bandpass filter function from
a flat-delay low-pass prototype. Let the natural modes of the low-pass filter be
those shown in Fig. 12-35a. If the s variable is scaled so that the bandwidth of the
low-pass response becomes equal to that of the desired bandpass bandwidth, the
zero pattern of Fig. 12-35b is obtained. This scaling can be accomplished if we
replace s by [(w},, — @}, )/2w,]s in the linear-phase low-pass response H(s). Next,

t The reader is referred for a detailed discussion of the design process to Ref 2, which also
describes a modified technique for synthesizing filters with odd degrees.
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Figure 12-35 (a) Zero pattern for a flat-delay low-pass circuit; (b) scaled zero pattern; (¢) scaled
and shifted zero pattern; (d) realizable, approximately flat-delay bandpass zero pattern.

the zero pattern is shifted to the bandpass band center by adding j(w',, + @’,)/2 to
the scaled s variable (Fig. 12-35¢). Thus, the new variable s is given by

, _ Wy — W, 'w;’l + w;z
= + 12-185
2w, . 2 ( )
Solving for s and substituting into H(s) gives the new response
2 r + 7
H,{s}= H{5) = H( w”—; s ——ja}pﬂﬁ‘m——(f-)%’f) (12-186)
P2~ Wpy Wp, — Wy,

Since all operations on s up to this point were linear, the new function H,(s')
still possesses the linear-phase property. However, it is no longer realizable since it
contains complex coefficients, as can be seen directly from (12-186) or from
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Fig. 12-35¢. To restore realizability, we must include the conjugates of all zeroes in
the pattern, as indicated in Fig. 12-35d. The resulting transducer function

2 i ¥
X H(——-a-?-fmm s+ jw ?—f—’l-iﬂ?f) (12-187)

pi 2~ “nm

is now real and hence realizable. However, the arbitrary addition of the conjugate
zero pattern in the lower half plane is going to disturb the flat-delay property of
H,(s") somewhat. If the relative bandwidth is very narrow, ie., if the bandwidth
(), — w},) is much smaller than the band-center frequency (@), + @),)/2, then
the upper-half-plane zeros will be much closer to the passband portion
W, < <w,, of the jow axis than the lower-half-plane zeros. Hence, for
(@), — @, )/(w),, + w,,) <3, the flat-delay property will be, to a good approxima-
tion, retained.

It should be noted that the transformation (12-187) from H(s) to H ,(s’) alters
the minimum absolute value of the function along the jo axis. Hence,
|H(jw)| = 1 for all w does not guarantee |H,(jw')| = 1 for all w. Therefore, in
general, a constant scaling factor C must also be included in H?*(s").

The design process will be illustrated by a simple example.

Example 12-12 Find a transducer function H,(s') such that the specifications
T{ew') = 0.5 £ 005 us afw’) < 1dB

are met in the frequency range 9.8 MHz < f* < 10.2 MHz.

Since here the narrow-band condition (w}, ~ ) )/(w,, + @},) = 2n0.4/2720 =
0.02 <4 holds, the approximation of Eqs. (12-185) to (12-187) can be used. We can scale
the time variable such that the required T, becomes equal to 1 for the low-pass prototype
function. This will enable us to use the results of Sec. 12-6 in the calculation of the pro-
totype function. By Sec. 1-4, scaling the time by T, = 0.5 us is equivalent to scaling the
radian frequency by wo = 1/T, = 2.0 Mrad/s. By (12-185), wy = (w}, — @} )/2®,, and
hence the passband limit of the low-pass prototype is given by

w, = "333”»53& = Hw), — w),)T, ~ 0.6283185

Wo

Since a 1-dB loss corresponds to a voltage ratio of about 0.89125, it is easy to establish from

Figs. 12-30 and 12-31 that n = 2 barely meets the specifications. In order to allow for the

distortion of the loss and delay responses inherent in this approximating process, we choose
n = 3. Then, from Table 12-9,

H(s) = E*(s) = s® + 65% + 155 + 15
Next, we use (12-187) to obtain the bandpass function. After we define

4 ’
w,, +
— 21 P2
Wy =Wy
s —
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Figare 12-36 Group-delay response of a flat-deiay bandpass filter.
(12-187) leads to
s 4
Hy(s')=H| — —jo | Hl — + i
2s) (wa an) (% +Jw;)
= C(s® + dss™ + as™ + a3s + a2 + @) 5" + ap)
Here, calculation gives
as =24 x 107 ay ~ 1.210753 x 108

a3 = 1911765 x 10*®> a4 = 4.789984 x 10!
ay =~ 3.76908 x 10°8 ap =~ 6.1905886 x 104
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Figure 12-37 Amplitude responsc of a flat-delay bandpass filter.
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The factor C can be found from the condition that the minimum value of | H,(jw’)| must
equal 1. This gives C x 422011 x 10~*3.

The group-delay and amplitude responses corresponding to H,(jw’) are shown in
Figs. 12-36 and 12-37, respectively. All specifications are obviously met. In fact, the loss
varies between O and 0.672 dB in the passband; the delay is between 0.50038 and
0.50081 us.

Additional material pertaining to the solution of the approximation problem
for bandpass filters can be found in Refs. 2, 3, and 11.

All discussions of this chapter have been carried out in terms of H(s) and K(s),
that is, in terms of the parameters of a doubly terminated reactance two-port.
These parameters satisfy the Feldtkeller equation |H|* =1+ |K|? for s = jo,
and hence H(s) is subject to the restriction |H(jw)| = 1. For other types of
circuits, e.g, active-RC filters, there may not exist any such limitation on the
magnitude of the transfer function. Nevertheless, the derivations and results given
in this chapter remain applicable, with a minor modification, which will be ex-
plained by example.

Example 12-13 To illustrate the process, assume that a third-degree active Jow-pass filter is
to be designed with maximally flat-loss response. Let the desired voltage gain at zero
frequency be 4,(0) = 10. Then we can introduce H(s) through the relation

A.(0)

Afls) = H(s)

(12-188)
Since |A,(jw)| has its maximum value at w = 0, the function H(s) in (12-188) satisfies
|H{jw}| = 1, just as before. Hence, we can use the Butterworth function obtained in
Sec. 12-2 and tabulated in Table 12-2. This gives

_ 10
T8 4257 4 25+ 1

A,(s)
which has all required properties.

It should also be pointed out that the whole of this chapter has been devoted
to the approximation of prescribed frequency responses. Approximation of a
prescribed time response is also possible. This subject is, however, beyond the
scope of this book. The interested reader should consult Refs. 4 and 13.

12-8 SUMMARY

In this chapter, analytical methods were described for finding realizable network functions. They were
applicable to lumped linear circuits, active or passive. The main emphasis was on filter transfer
functions: low-pass, high-pass, and bandpass characteristics were considered in detail. The topics
discussed included:
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etically realizable) are too widely spread for casy practical construction; the ratios Ly/l
and C} /C} are over 130. ¢

It is known from experience that this phcnomenon is often encountered for narro
band bandpass filters, i, for filters where @), — @), < J @), W}, , as is the case here. ]
remedy the situation, the circuit equivalence shown in Fig. 12-24 may be used. The circu
shown are equivalent if the following relations hold:

"
- 1-z
WM L'1=L|—2~Z C’1=.C2x—2——
et Bl . =
‘{‘ L’,=L,~;—y = Cyx 22
e’ (s; g
where‘ ! ds x & |+&+ﬁ z_4ﬂﬂ
C, L, C: Ly
L . [_4G (1211
ya [1--2 z4 [1--=
x L, xC;

For the circuit of Fig. 12-23b, C, /C; = L, /L, and hence (12-115) gives
x = 440291 y =z=0.15102

Hence, using (12-114) and denormalizing the impedance level, i.e, multiplying all indu
tances and dividing all capacitances by Ro = 150 £, gives the element values indicated
Fig. 12-23c. The spread of element values is now less than 7.

Next, consider the frequency transformation
- (12-11

Proceeding as we did before with (12-97), we can readily derive the correspondir
clement transformations (Fig. 12-25a and b) and the w-vs.-o’ curve (Fig. 12-25¢
The latter makes it obvious that Eq. (12-116) transforms a low-pass filter into
bandstop one. Figure 12-25d illustrates (for a Chebyshev filter) the resulting ma
ping of the loss response.

Since the analysis of this transformation is a close parallel of that of ti
lowpass-to-bandpass transformation, the detailed calculations are left to ti
reader as an exercise (see Probs. 12-31 to 12-34).

A review of Egs. (12-91), (12-97), and (12-116) reveals that each of the
relations replaces w by a reactance function f (@) of «'. This makes it possible
replace the immittances wL; and wC; of the lowpass prototype filter, one by on
by realizable reactances to obtain the final high-pass (or bandpass or bandstoj
filter. Clearly this process can be generalized to more complicated reactance fun
tions; however, the symmetry conditions which result become very complicatc

Figwe 12-25 (a) and (b) The transformation of low-pass prototype elements into baadstop fil
impedances; {c) the transformation of the frequency variable; (d) the effect of the transformation
the loss response.
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